

A Neighborhood-augmented LSTM Model for Taxi-Passenger Demand Prediction

<u>Tai Le Quy</u>^{*}, Wolfgang Nejdl^{*}, Myra Spiliopoulou^{**}, Eirini Ntoutsi^{*} *Leibniz University Hannover & L3S Research Center, LUH, Hannover **Otto-von-Guericke University, Magdeburg

Würzburg, 16.09.2019

Content

- Introduction
- Methodology
- Dataset
- Experiments
- Results
- Conclusion and outlook

Image source: http://www.pngall.com/taxi-cab-png/download/12771

Introduction

- Taxi companies
 - Improve the levels of passenger satisfaction and maximal profit
 - Balance the relationship between the passenger demand and the number of running taxi vehicles
- Taxi-Passenger Demand Prediction
 - It's useful for drivers in making decision moving to pick up passengers in a particular region in the city
 - Spatial information is useful for prediction task

Introduction

Motivation

The intuition: nearby taxi-stands might have similar demands

Pickup demand history for nearby taxi-stands 1 and 49.

Spatial distribution of the taxi-stands Numbers 1-63 indicate the IDs of the stands

Goal

> Develop a neighborhood-augmented LSTM model to predict the taxi-passenger demand

Spatial proximity (left) vs pickup demand correlation (right) between taxi-stands (based on dataset D1).

Problem denition

- \Box Let S = {s₁; s₂; ..; s_N} be the set of predened N taxi-stands in a city
- $\Box X_s = \{X_{s:0}; X_{s:1}; ...; X_{s:t}\}$ to be a discrete time series modeling the taxidemand for stand s

based on an aggregation period of P-minutes

 \Box Our goal is to build a model which predicts the demand $X_{s:t+1}$ for the next time point t + 1 at taxi-stand s.

Methodology

Neighborhood-augmented LSTM

The architecture of the neighborhood-augmented LSTM.

Neighborhood-augmented LSTM

□ Algorithm

- An LSTM model for each taxi-stand
- Input of LSTM: (k+1)dimensional vector of taxistand s and its k-neighbors
- Output: taxi demand for taxistand s

output: Prediction model M_s for taxi-stand s

- 1 //Data augmentation
- ² X_s : the demand history of taxi-stand s up to time t
- 3 $X'_{s} \leftarrow X_{s}$ //extended representation
- 4 {*Neighbors*_s}: the set of k nearest taxi-stands to s
- 5 for $i \leftarrow 1$ to $|\{Neighbors_s\}|$ do
- X_i : the demand history of taxi-stand *i*
- $X'_s \leftarrow Extend(X'_s, X_i)$ 7
- 8 end
- 9 Normalize features
- 10 //Train on the augmented data
- 11 $M_s \leftarrow LSTM(X'_s)$

input : Taxi demand dataset; k-number of neighbors

Algorithm 1: Neighborhood-augmented LSTM model training

Neighborhood-augmented LSTM

- 1. Input (X'_s) , the extended description of stand s; look back value = 5 (see Section 4.4.)
- 2. LSTM (N=200, optimizer = 'Adamax', Activation function = 'tanh', loss= 'mean squared error', batch size = 100 (see Section 4.4.))
- 3. Full connected LSTM(N=200, Activation function ='tanh')
- 4. Dropout =0.7 (see Section 4.4.)
- 5. Dense (Activation function = 'tanh')

Dataset

- Porto city in Portugal
 - Period: July 2013 to June 2014
 - Records: 1.710.670
 - 9 features
 - 63 taxi-stands
- Two versions of dataset for experiment
 - D1: all trips departing from taxi-stands (817.861 instances)
 - D2: all trips (1.706.572 instances).
 - Assign trips (do not start from a taxi-stand) to their closest taxistand based on distance.

Dataset Characteristics

Spatial distribution

Pickup distribution

Spatial distribution of the taxi-stands Numbers 1-63 indicate the IDs of the stands

Pickup distribution per taxi-stand on D1

Pickup distribution per taxi-stand on D2

Experiment

- Experimental setup
 - Set aggregation period at 30 minutes
 - 70% data for training, 30% data for testing (by the time series)
 - Validation, turning parameters on data of taxi stand 1

Evaluation measure

in which, X_s and \hat{X}_s are the true and predicted demand, c=1 Mean Squared Error (MSE)

- Baselines
 - Simple Moving Average
 - Linear Regression
 - **Random Forest Regression**
 - XGBoost Regression

symmetric MeanAbsolute Percentage Error (sMAPE) $sMAPE_{s} = \frac{100\%}{t} \sum_{i=1}^{t} \frac{|X_{s,i} - \hat{X}_{s,i}|}{|X_{s,i}| + |\hat{X}_{s,i}| + c}$

Results

Taxi-demand prediction quality results

Neighborhood-augmented LSTM outperforms other models in term of sMAPE.

Model	Training		Testing		Model	Training		Testing	
	sMAPE ($\%$) MSE	sMAPE (%) MSE	8	MAPE (%)	MSE	sMAPE (%)	MSE
Simple Moving Average			23.34	1.721	Simple Moving Average			30.33	5.369
Linear Regression	24.37	1.61	24.52	1.765	Linear Regression	30.78	4.206	31.23	5.988
Random Forest Regression	16.83	0.383	24.25	1.660	Random Forest Regression	18.49	0.715	31.03	5.503
XGBoost Regression	23.90	1.391	23.91	1.585	XGBoost Regression	30.466	3.605	30.51	5.449
LSTM	18.37	1.659	18.54	1.839	LSTM	27.03	4.16	27.22	6.660
Neighborhood-augmented LSTM	17.32	1.465	17.63	1.682	Neighborhood-augmented LSTM	25.88	3.84	26.07	6.444

Prediction quality of the different models on D1 K=15

Prediction quality of the different models on D2 K=25

Results

Performance of models on taxi-stand

across dierent taxi-stands for dataset D2

Results

- Error distribution on two dataset
 - Models work better with "clean" dataset (D1)
 - Lower variation in results with the full-dataset (D2)

Comparing error distributions for different prediction methods for dataset D1 (left) and D2 (right)

Results

- Impact of neighbourhood size k
 - In general, the size of neighborhood has effect to the prediction performance
 - Should set a threshold for k

13 17 21 -5 ġ

Evaluating the impact of neighborhood on the predictive performance of neighborhood-augmented LSTM model on: D1 (left) and D2 (right)

^{490 826 1059 1249 1423 1585 1732 1875 2018 2156 2290 2424 2564 2715 2884 3088} Average distance to k-neighbors (m)

Conclusion and outlook

- We propose a neighborhood-augmented LSTM model Consider k-neighbors for prediction
 - Increase the performance of LSTM model

□ Future work

- Learn locally per stand and re-tune globally the predictions in the city
- Including other sources of information (POI, events, traffic pattern...)

Thank you for your attention! **Questions?**

A Neighborhood-augmented LSTM Model for Taxi-Passenger Demand Prediction Tai Le Quy